Methods and Motives for Infectious Disease Models: The Tale of COVID-19

Nicholas G. Reich

ASTMH Committee on Global Health Pre-Meeting Course "Modeling for Disease Outbreaks: Practical Approaches to Understanding and Using Models" 11 November 2020

reichlab.ioreichlab

These slides are available for download at: <u>https://covid19forecasthub.org/doc/talks/</u>

This work has been supported by the National Institutes of General Medical Sciences (R35GM119582) and the Centers for Disease Control and Prevention (1U01IP001122). The content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS, the National Institutes of Health, or CDC. Why model?

Flu data from New England 12.00 2017/2018 season

13.00

11.00

10.00

9.00

8.00

7.00

6.00

Weighted ILI (%)

Data available as of Friday, Dec 29 2017 gives a flu signal through Saturday, Dec 23, 2017.

^{12.00 –} Flu data from New England 2017/2018 season

Each model is predicting both the past and the future!

Red model is suspicious of downtick in activity,
 predicts continued growth.

13.00

10.00

9.00

8.00

7.00

Weighted ILI (%)

Purple model foresees continued decline

Baseline

Flu data from New England 2017/2018 season

13.00

Good models might...

- Anticipate and adjust for data quality issues.
- Infer what is happening right now.
- Forecast what will be observed in the near future.
- Project hypothetical outcomes in the distant future.

Don't expect a single model to do all of these things well!

COVID-19 example

Nowcasts

How fast is COVID-19 spreading right now?

Nowcasting

Building a model that draws inference about about trends the recent past.

Nowcasts

How fast is COVID-19 spreading right now?

Nowcasting

Not as agreed upon definition, but I'd vote for "building a model that draws inference about about trends the recent past."

Forecasts

What can we expect in the

next 2-4 weeks?

Short-term Forecasting

Making **falsifiable**, **evaluable** predictions of observable future quantities.

National Forecast All Models **Combined Forecast** 8k ·8k New Weekly Deaths 6k 6k **JCB RPI-UW** Reported 4k 4k BPagano JHU-IDD CovidComplete UGA-CEID JHU-APL STH Columbia-UNC Karlen TTU Covid19Sim LANL UA MIT-ORC LNQ UCLA Columbia MIT-LCP UCM 2k 2k UCSD-NEU DDS MOBS CDC LSHTM UMass-MB NotreDame-Mobility Geneva Oliver Wyman UM I GT-DeepCOVID PSI ERDC Ensemble ISU USC QJHong Inner Bands: 50% Prediction Intervals -0 IQVIA UT. Bands: 95% Prediction Intervals ^LO Individual models ESG Outer Bands: 95% Prediction Intervals Aug-15 Sep-01 Sep-15 Oct-01 Oct-15 Nov-01 Aug-15 Sep-01 Sep-15 Oct-01 Oct-15 Nov-01

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html

Forecasts

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html

Scenarios

Long-term Scenarios

What are the long-term impacts under different scenarios?

Projections based on specific assumptions.

Figure 1: Scenarios for the Course of the Epidemic from 2020–2022, for a High-Income Country Setting, in the Absence of a Vaccine (counterfactual scenarios). (A) Assuming "long immunity" and (B) assuming an average duration of naturally acquired immunity of 1 year. We assume that R₀=2.5 up to time t₁ (May 2020) and that R_{t1}

https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-09-25-COVID19-Report-33.pdf ¹⁵

Scenarios

Long-term Scenarios

What are the long-term impacts under different scenarios?

Projections based on specific assumptions.

Figure 1: Scenarios for the Course of the Epidemic from 2020–2022, for a High-Income Country Setting, in the Absence of a Vaccine (counterfactual scenarios). (A) Assuming "long immunity" and (B) assuming an average duration of naturally acquired immunity of 1 year. We assume that R₀=2.5 up to time t₁ (May 2020) and that R_{t1}

https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-09-25-COVID19-Report-33.pdf ¹⁶

Nowcasting: what is under the hood?

slides created with help of Graham Casey Gibson

"Classic" Compartmental Models

- Compartmental models have long been used to model epidemics.
- Most common is the SIR/SEIR model

Differential Equation Form

- Differential equation representation describes instantaneous rates of flow.
- SIR model is equivalent to assuming that infected individuals become infectious immediately.

$$\frac{dS}{dt} = -\beta \cdot \frac{I}{N} \cdot S$$
$$\frac{dE}{dt} = \beta \cdot \frac{I}{N} \cdot S - \sigma \cdot E$$
$$\frac{dI}{dt} = \sigma \cdot E - \gamma \cdot I$$
$$\frac{dR}{dt} = \gamma \cdot I$$

The reproduction number

 R₀ (pronounced "R-naught") is the "expected the number of secondary cases one case would produce in a completely susceptible population".

Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res. 1993;2:23–41
 Fine PEM. Herd immunity: history, theory, practice. Epidemiol Rev. 1993;15:265–302

Rt

- The average number of secondary cases at time t 1
- Naturally decreases over time due to decrease of S
- Is a product of biology and behavior.

https://staff.math.su.se/hoehle/blog/2020/04/15/effectiveR0.html

Generation Interval

 Rt relies on the generation interval: time from exposure of infector to exposure of infectee.

Renewal Equations

• We can also write the number of new infections at a given time point t using the "renewal style" equation (borrowed from population demography "renewal" of a population from new births).

Intuition: New infections can be written as the fraction of historical infections that produce infections at time t multiplied by how many they produce on average.

Rt Estimator

 We can simply re-arrange the renewal style equation to obtain an estimator for R_t

$$\hat{R}_t = \frac{I_t}{\sum_k I_{t-k} g_k}$$

Intuition: The average number of secondary infections can be written as the observed new infections divided by the historical infections that produced at least one secondary infection at time t.

Cori, Ferguson, Fraser and Cauchemez. AJE, 2013. <u>https://doi.org/10.1093/aje/kwt133</u>

In Practice

- The naive estimator shown in the previous slide suffers from a variety of issues
 - Instability in small sample sizes
 - Sensitive to reporting variation
 - Does not take into account imported cases ("local" cases only)
- "Cori estimator" solves these issues via Bayesian estimation, implemented in R.

Forecasting: what is under the hood?

COVID-19 Forecast Hub: Background

- Each week the Hub receives forecasts of weekly incident and cumulative deaths and incident cases in the US due to COVID-19 from over 50 teams.
- The Hub builds an ensemble that combines predictions from these models for 1 through 4 week ahead forecasts.

https://covid19forecasthub.org/

Modeling approaches vary

- <u>YYG-ParamSearch</u>: "machine learning techniques on top of a classic infectious disease model to make projections for infections and deaths."
- <u>UMass-MechBayes</u>: "classical compartmental models from epidemiology, prior distributions on parameters, models for time-varying dynamics, models for partial/noisy observations of confirmed cases and deaths."
- <u>UCLA-SuEIR</u>: "an improved SEIR model for predicting the dynamics among the cumulative confirmed cases and death of COVID-19"
- <u>IHME-CurveFit</u>: "hybrid modeling approach to generate our forecasts, which incorporates elements of statistical and disease transmission models."
- <u>MOBS-GLEAM_COVID</u>: "The GLEAM framework is based on a metapopulation approach in which the world is divided into geographical subpopulations. Human mobility between subpopulations is represented on a network."
- <u>UT-Mobility</u>: "For each US state, **we use local data from mobile-phone GPS traces** made available by [SafeGraph] to quantify the changing impact of social-distancing measures on 'flattening the curve.' "
- <u>GT-DeepCOVID</u>: "This **data-driven deep learning model** learns the dependence of hospitalization and mortality rate on various detailed syndromic, demographic, mobility and clinical data."

ID Epi Prediction Model Taxonomy

Mechanistic

Phenomenological

SIR

SIRS

SEIRS

agent-based

Semi-mechanistic

time-series with climate vars.

regression w/ lagged incidence

spatial regression

SIR + smoothing

Social media keyword analysis

deep learning

Building the Ensemble

• Teams are required to submit 23 quantiles of a predictive distribution:

$$\widehat{P}(Y \le q_1) = 0.01, \ \widehat{P}(Y \le q_2) = 0.025, \ \dots, \ \widehat{P}(Y \le q_{12}) = 0.5, \ \dots, \ \widehat{P}(Y \le q_{23}) = 0.99$$
The predictive median
Limits of a 98% prediction interval

- At each quantile level, the ensemble combines the predictions from all models:
 - Before July 28, we used the simple average across all models, after manually screening unreasonable forecasts
 - From July 28 on, we have used the median without subjective screening

1. ensembles are robust

Ensemble is most accurate

Mean WIS across all forecasted locations, by week and target

Ensemble is most accurate

Mean WIS across all forecasted locations, by week and target

Ensemble is most accurate

Mean WIS across all forecasted locations, by week and target

2. complexity not needed

Simple ensembles do well

- All ensembles improve over a baseline (dark green).
- Ensemble with weights that are based on past performance (pink line) are similar to ensembles that combine all models with equal weight (light green lines).

Ongoing challenges

Challenge 1: Data sparsity

(infectious disease dynamics cannot be observed like the weather)

image credit: https://databasin.org/datasets/15a31dec689b4c958ee491ff30fcce75

Challenge 2: Feedback loop

- Weather forecasts can't change the weather.
- An outbreak forecast could change an outbreak.

US military troops heading to Liberia to assist with Ebola outbreak. image: <u>defense.gov</u>

Images of vector-control activities to control dengue in Thailand courtesy of Sopon lamsirithaworn, Thailand Department of Disease Control

Challenge 3: Translation into action

Dan Jernigan, Director of Influenza Division, CDC September 2018

Forecasting Applications

- Informing healthcare providers
 - Outpatient clinic staffing
 - Emergency Department staffing and triage
 - Hospital general ward and ICU bed planning
- Informing pharmacies
 - Antiviral and symptom-reducing drug supplies
- Informing parents
 - Push messages on warning signs of severe influenza
 - Improved situational awareness for enhancing flu prevention actions
- Informing Schools
 - Prepare for increased absenteeism and potential for reactive school closures
- Informing Businesses
 - Alert for higher potential for absenteeism or caring for ill children
- Pandemic response

photo credit: Roni Rosenfeld

Improving situational awareness through media

What is the appropriate role for these models in outbreaks?

We have lots of work to do!

https://xkcd.com/2289/

We have lots of work to do!

